segunda-feira, 12 de outubro de 2020

  TERCEIRA QUANTIZAÇÃO E RELATIVIDADE SDCTIE GRACELI EM:





TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO

X



teorema do virial estabelece que a energia cinética média de um sistema de partículas é igual ao seu virial para os casos em que o valor médio de G seja constante, ou seja, :[1]

 .
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Considere-se a seguinte quantidade física:

 .
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Nessa expressão  e  são, respectivamente, o vetor posição e o vetor momento linear da k-ésima partícula de um sistema de partículas. O virial  de um conjunto de  partículas é definido de tal forma que

 .
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O símbolo  representa a média temporal da grandeza por ele encerrada ao longo do intervalo de tempo adequado à situação, tipicamente o período de oscilação em movimentos periódicos.

A expressão "virial" deriva do latimvis, viris, palavra para "força" ou "energia" e foi cunhada por Rudolf Clausius em 1870.

Uma das grandes utilidades do teorema do virial se deve ao fato de que ele permite que a energia cinética total seja calculada mesmo para sistemas complicados que não têm uma solução exata, tais como aqueles considerados em mecânica estatística. Por exemplo, o teorema do virial pode ser usado para derivar o teorema da equipartição, a equação de Clapeyron para os gases ideais ou mesmo para calcular o limite de Chandrasekhar para a estabilidade de estrelas anãs brancas.


Dedução da expressão matemática para o virial

derivada temporal de G pode ser escrita como

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


ou, de modo mais simples,

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Aqui,  representa a massa da -ésima partícula,  é a força líquida atuando sobre a partícula e  é a energia cinética total do sistema.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A média desta derivada no intervalo de tempo  é definida como:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Assim, tomando a média dos dois lados da expressão para a derivada de G com relação ao tempo, temos:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Da expressão acima segue-se que, se , então

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Existem muitas razões pelas quais a média das derivadas temporais podem se anular, isto é,

.

Uma razão frequentemente citada se aplica a sistemas ligados, i.e., sistemas em que as partículas permanecem sempre juntas. Nesse caso, o virial  está normalmente entre dois valores extremos,  e , e a média vai a zero para o limite de tempos muitos longos 

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Mesmo se a média da derivada temporal  é somente aproximadamente zero, o teorema do virial continua valendo, com a mesma ordem de aproximação.

Assim, quando a média da derivada temporal de G anula-se,

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que é a expressão matemática para o Teorema do Virial.[2]

Relação com a energia potencial

força total  atuando sobre a partícula  é a soma de todas as forças exercidas pelas outras partículas do sistema, 

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde,  é a força aplicada pela partícula  na partícula . Portanto, o termo de força da derivada temporal do virial pode ser escrito como

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Como nenhuma partícula atua sobre sí mesma (i.e., , sempre que ), temos que

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde assumimos que a terceira lei de Newton pode ser aplicada, i.e.,  (reações iguais e opostas).

É comum acontecer que as forças possam ser derivadas da energia potencial  que é uma função somente da distância, , entre as partículas  e . Como força é o gradiente da energia potencial, temos, neste caso

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


a qual é igual e oposta a , a força aplicada pela partícula  sobre a partícula , como pode ser confirmado por cálculos explícitos. Portanto, o termo de força da derivada temporal do virial é

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Aplicação a forças que seguem uma lei da potência

É comum acontecer que a energia potencial  é uma função do tipo lei de potência

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde o coeficiente  e o expoente  são constantes. Em tais casos, temos:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  é a energia potencial total do sistema

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Em tais casos, quando , a equação geral torna-se

Um exemplo muito citado é a força de atração gravitacional, para a qual . Neste caso,

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Este resultado é notavelmente útil para sistemas gravitantes complexos, tais como o sistema solar ou galáxias, e também para sistemas eletrostáticos, para os quais , também.

A pesar de ter sido derivado para a mecânica clássica, o teorema do virial também vale para a mecânica quântica.

Inclusão de campos eletromagnéticos

O teorema do virial pode ser expandido para incluir o campo magnético e o campo elétrico[3]

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde I é o momentum de inérciaG é o vetor de PoyntingT é a energia cinética do "fluido", U é a energia térmica (aleatória ou cinética) das partículas, WE e WM são as energias dos campos elétrico e magnético contidas no volume considerado. Finalmente, pik é o tensor pressão de fluido expresso no sistema de coordenadas móvel local

,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Tik é o tensor de stress eletromagnético,

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Um plasmoide é uma configuração finita de campos magnéticos e plasma. Com o teorema do virial é fácil ver que qualquer configuração que seja, se expandirá se não for contida por forças externas. Em uma configuração finita sem paredes de pressão-rolamento ou bobinas magnéticas, a integral de superfície será nula. Como todos os outros termos do lado direito são positivos, a aceleração do momentum de inércia também será positiva. Também é fácil de estimar o tempo de expansão τ. Se a massa total M está confinada dentro de um raio R, então o momentum de inércia é aproximadamente MR2, e o lado esquerdo do teorema do virial é MR 22. Os termos no lado direito somam até cerca de pR3, onde p é o maior entre a pressão de plasma e a pressão magnética. Equacionando esses dois termos e resolvendo para τ, encontramos

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

onde cs é a velocidade da onda acústica de íons (ou onda de Alfven), se a pressão magnética é maior que a pressão de plasma). Logo, a meia-vida esperada para um plasmóide é da ordem do tempo de trânsito acústico (ou de Alfven).